(Applicable to the batch of students admitted in the academic year 2025-26 onwards)

B.Sc., Genetics (CBCS)

FACULTY OF SCIENCE, SU

B.Sc. (GENETICS)
Syllabus (CBCS)
(w.e.f. 2025-2026)



FACULTY OF SCIENCE SATAVAHANA UNIVERSITY KARIMNAGAR – 505002

2025

# Telangana Council of Higher Education, Govt. of Telangana B.Sc CBCS Common Core Syllabus for all Universities in Telangana B.Sc. – Genetics (w.e.f.2025-26)

|      | FIRST YEAR SEMEST                                                | ERI            |       |         |
|------|------------------------------------------------------------------|----------------|-------|---------|
| Code | Course Title                                                     | Course<br>Type | HPW   | Credits |
| BS   | Optional – I Transmission Genetics & Cell Biology                | DSC1A          | 4+3=7 | 4+1=5   |
|      |                                                                  |                |       |         |
|      | FIRST YEAR SEMESTI                                               | ER II          | :     |         |
| BS   | Optional - I Biochemistry & Microbial Genetics                   | DSC1B          | 4+3=7 | 4+1=5   |
|      | SECOND YEAR SEMEST                                               | ER III         |       |         |
| BS   | Optional - I Molecular Genetics & Genetic Engineering            | DSC1C          | 4+3=7 | 4+1=5   |
|      |                                                                  |                |       |         |
|      | SECOND YEAR SEMEST                                               | ER IV          |       |         |
| BS   | Optional - I Biostatistics, Population Genetics & Bioinformatics | DSC1D          | 4+3=7 | 4+1=5   |
|      |                                                                  |                |       |         |

| THIRD YEAR SEMESTER V |                                                                                                                                               |                |       |         |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|---------|--|
| Code                  | Course Title                                                                                                                                  | Course<br>Type | HPW   | Credits |  |
| BS                    | Basic & Applied Genetics                                                                                                                      | MDC            | 4     | 4       |  |
| BS505                 | Optional – I Plant Genetics & Biotechnology                                                                                                   | DSC1E          | 4+3=7 | 4+1=5   |  |
|                       | THIRD YEAR SEMESTER                                                                                                                           | R VI           |       |         |  |
|                       | Cytogenetics- Lab Processing and<br>Analysis/ Biophysical and Molecular<br>Biology Techniques/ DNA technology in<br>health care & Transgenics | SEC-4          |       |         |  |
| BS603                 | Optional - I Human Genetics & Immunology                                                                                                      | DSC1F          | 4+3=7 | 4+1=5   |  |
|                       | Internship/Project                                                                                                                            |                | 4     | 4       |  |

#### **Skill Enhancement Course**

- Paper 1: Communication Skilla/Professional Development Skills/Entrepreneurship & Startups
- Paper-2: Professional Development Skills/ Communication Skills/Entrepreneurship & Startups
- Paper-3: Fundamentals of AI Tools/Ability Skills( Cometitive Mathematics)
- Paper4: Cytogenetics- Lab Processing and Analysis/ Biophysical and Molecular Biology Techniques/ DNA technology in health care & Transgenics

# B.SC GENETICS I YEAR SEMESTER- I DSC-PAPER- I: TRANSMISSION GENETICS & CELL BIOLOGY

#### Credit-1: Mendelian inheritance and its extensions

- 1.1. Mendel's experiments; Law of segregation, monohybrid cross, reciprocal cross, back cross, test cross; Law of independent assortment, dihybrid cross, Chromosomal theory of inheritance,
- 1.2. Variations to dominance- Co-dominance and Incomplete dominance; Lethal and Sublethal genes, Penetrance and Expressivity, Pleotropism, Multiple alleles- Eye colour in Drosophila, ABO blood groups in human; Rh Blood group incompatibility; Self incompatibility in plants.
- 1.3. Gene interactions-types of epistasis (9:7; 9:3:4; 9:6:1; 12:3:1; 15:1)
- 1.4. Multifactorial inheritance: Features of quantitative inheritance- Additive effect, Kernel colour and size in wheat /maize, skin color in man
- 1.5. Sex linked inheritance X-linked and Y-linked traits Holandric genes, SRY gene; Sex limited and sex influenced traits; Sex determination –mechanisms of sex determination in Drosophila and Human
- 1.6. Non-medelian inheritance: Plastid inheritance Variegation in *Mirabilusjalapa*; Maternal effects and inheritance Shell coiling in snails, Poky mutants in *Neurospora*.

#### Credit- 2: Linkage, Crossing over and Gene mapping

- 2.1 Discovery of linkage Phases of linkage
- 2.2 Chiasmata and Crossing over formation—Recombination
- 2.3 Cytological proof for crossing over Curt Stern and McClintock experiments
- 2.4 Linkage analysis Recombination frequencies, Two-point and Three-point crosses
- 2.5 Gene mapping Coincidence and Interference, Determination of gene order
- 2.6 Gene mapping in neurosporra—Tetrad analysis, Mitotic recombination in *Aspergillus* and Drosophila.

#### Credit- 3: Cell division and Cell fate Mechanisms

- 3.1Eukaryotic Cell cycle Phases of cell cycle G0, G1, S,G2
- 3.2 Regulation of cell cycle cyclins, CDK proteins, role of p<sup>53</sup> in cell cycle
- 3.3 Mitosis Stages in mitotic cell division- significance ofmitosis
- 3.4 Meiosis Formation of Synaptonemal complex, crossing over, chiasma formation,

significance ofmeiosis

- 3.5Apoptosis- Extrinsic and intrinsic pathways and significance
- 3.6 Senescence, Necrosis-Characteristics and mechanisms.

# Credit- 4: Chromosome structure, chromatin organization and variation

- 4.1 Chromosome morphology- size and shape; Euchromatin and Heterochromatin-constitutive and facultative heterochromatin
- 4.2 Components of chromatin, histones & non-histones
- 4.3 Packing of DNA into chromatin Nucleosome and higher orderorganization
- 4.4 Specialized Chromosomes Lampbrush chromosomes, Polytene Chromosomes
- 4.5 Structural chromosomal aberrations duplications, deletions, inversions& translocations with examples, Genetic consequences.
- 4.6 Numerical chromosomal aberrations Aneuploidy, euploidy, auto-polyploidy and allopolyploidy, Genetic consequences.

#### Credit- 5: Practicals

- 1. Identification of normal and mutant stocks of Drosophila
- 2. Drosophila- monohybrid and dihybrid segregation
- 3. Problems on Mendelian segregations- monohybrid, dihybrid and trihybrid crosses; multiple alleles, non-allelic interactions, multi-factorial inheritance
- 4. Problems on linkage and mapping of genes
- 5. Study of Mitosis in Onion root tips
- 6. Study of Meiosis in Maize/Grasshopper
- 7. Preparation of Drosophila salivary gland chromosomes Polytene chromosomes
- 8. Identification of structural and numerical abberations

#### **Recommended Books**

- 1. Genetics by Gardener
- 2. Theory and problems in Genetics by Stansfield
- 3. Introduction to Genetic Analysis by Suzuki, Griffith, Richard and Lewontin
- 4. Genetics by Strickburger
- 5. Genetics by Snustad& amp; Simmonds
- 6. Principles of Genetics by Tamarin
- 7. Cell & Molecular Biology E.D.D. De Robertis & E.M.F. De Robertis
- 8. Molecular Biology of the Cell Bruce Alberts

# B.Sc. GENETICS I YEAR SEMESTER- II DSC-PAPER- II: BIOCHEMISTRY & MICROBIAL GENETICS

#### **Credit 1:Structure of Biomolecules**

- 1.1. Overview of biomolecules carbohydrates, proteins, aminoacids, fatty acids,lipids, vitamins, hormones, enzymes and nucliec acids
- 1.2. Carbohydrate structure and classification
- 1.3. Aminoacid structure and classification
- 1.4. Lipids structure and classification (saturated and unsaturated fatty acids)
- 1.5. Protein Primary, secondary/tertiary and quaternary
- 1.6. Nucleic acids-structure, forms of DNA, forms of RNA

#### Credit 2: Metabolism of Biomolecules

- 2.1. Carbohydrate Metabolism- Overview of glycolysis, Citric acid cycle, Glycogenesis and glycogenolysis, pentose phosphate pathway
- 2.2. Aminoacid metabolism- General reaction of amino acid metabolism, transamination oxidative deamination and decarboxylation. Urea cycle, Glycogenic and ketogenic amino acids
- 2.3. Fatty acid Metabolism- beta oxidation of fatty acids
- 2.4. Nucleic acid metabolism-purine and pyramidine synthesis
- 2.5. Enzymes- structure and functions, enzyme kinetics
- 2.6.Hormones Endocrine system, Mechanism of hormone action: Peptide hormones, Secondary messengers

#### Credit 3: Recombination and mapping of genes in Bacteria

- 3.1. Overview of Bacteria Structure, Bacerial phenotypes-auxotrophs, prototrophs, antibiotic resitance and sentivity
- 3.2. Growth curve-lag, log, stationery and decline phases
- 3.3. Transformation-Mechanism of transformation, Transformation mapping
- 3.4. Transduction Lytic cycle, lysogeny, factors governing lysogeny
- 3.5. Generalised transduction, Specialized Transduction-Transduction mapping
- 3.6. Conjugation-F+F-Hfr strains, Interrupted conjugation experiment

#### Credit 4: Fine structure analysis of gene

- 4.1. One gene-one enzyme hypothesis arginine biosynthesis in Neurosporacrassa
- 4.2. Collinearity between gene-protein-Tryptophan synthase gene in E. coli.

- 4.3. Analysis of r-II locus of T4-phage rII screening techniques-host restriction, permissive host
- 4.4. Genetic recombination in phage crosses
- 4.5. Complentation-cis-trans test, Intra codon recombination.
- 4.6. Deletion mapping elucidation of fine structure of r-II locus using point and deletion mutants.

# **Credit 5: Practicals GEN 212**

- 1. Isolation and separation of DNA
- 2. Estmation of DNA by UV spectrophotmetry
- 3. Estimation DNA by DPA method
- 4. Estimation RNA by Orcinol reagent
- 5. Estimation of protein-biurette method
- 6. Methods of sterilization, media preparation
- 7. Bacterial growth curve

#### **Recommended Books**

- 1. Biochemistry-U.Satynarayana
- 2. Biochemistry-Voet & Voet
- 3. Microbiology-Prescot
- 4. Microbiology -Pelczar
- 5. Microbial Genetics David Friefelder

# B.Sc GENETICS II YEAR SEMESTER- III BS MOLECULAR GENETICS & GENETIC ENGINEERING

#### Credit-1: Nucleic acids, DNA replication & DNA repair

- 1.1 DNA as the genetic material-Griffith's transformation experiment, Avery, MacLeod and McCarty's experiments and Hershey & Chase phage-labelling experiment; RNA as genetic material- tobacco mosaicvirus
- 1.2 Chemistry of Nucleic acids Nucleotides, Franklin's X-ray crystallography, Chargaff's rule, Watson-Crick model and forms of DNA (A, B & Z); types of RNA (rRNA, mRNA&IRNA)
- 1.3DNA replication-conservative, semi-conservative and dispersive models, Meselson-Stahlexperiment; Mechanisms of DNA replication-linear, circular, rolling circle, D-loop and θ-models
- 1.4 DNA replicative enzymes (DNA polymerases, helicase, primase, ligase, telomerase, nuclease & topoisomerases) and proteins (initiator protein & single strand binding proteins)
- 1.5 Mutations: types of mutations- transition, transversion, frame shift, silent, mis-sense andnon-sense; Induced mutations- physical and chemicalmutagens, spontaneous mutations
- 1.6 DNA damage and repair mechanisms direct, excision and mismatch, SOS, non-homologous end joining(NHEJ)

#### Credit-2: Gene expression in Prokaryotes & Eukaryotes

- 2.1 Structure of prokaryotic gene, Structure of eukaryotic gene, Structure and functions of RNA polymerase & it's subunits in prokaryotes
- 2.2 Transcriptional machinery in eukaryotes (RNA polymerases) and their structural and functional features
- 2.3 Genetic code-properties, deciphering of genetic code, Wobble hypothesis
- 2.4 Transcription mechanism-initiation, elongation& proof reading, termination (Rho independent & Rho dependent)
- 2.5 Transcription in eukaryotes-Initiation, elongation & termination factors
- 2.6 Translation mechanism-initiation, elongation and termination

#### Credit-3: Gene regulation in prokaryotes &eukaryotes

- 3.1 Prokaryotic transcriptional regulation (inducible system) Operon concept- lac operon & glucose effect
- 3.2 Prokaryotic transcriptional regulation (repressible system) tryptophanoperon
- 3.3 Post-transcriptional modifications capping, poly-adenylation

- 3.4 Splicing and alternate splicing, rRNA andtRNA splicing
- 3.5Post-translational modifications-glycosylation, lipidation, acetylation, ubiqutination & chaperones
- 3.6 Gal locus regulation in yeast-regulation of mating type

#### **Credit-4: Genetic Engineering**

- 4.1 Introduction to r-DNA technology; enzymes used in molecular cloning- restriction Endo nucleases, DNA modifying enzymes- methylases, polymerases, ligases and phosphatases
- 4.2 Vectors used in cloning: *E.coli*, plasmid vectors- pBR322, pUC vectors; cosmids; Shuttle vectors- yeast vectors
- 4.3 Strategies for construction of genomic and cDNA libraries
- 4.4 Screening for detection of cloned genes-antibiotic resistance, blue-white screening; Blotting techniques (Southern, Western & Northern)
- 4.5Applications of genetic engineering in agriculture, medicine and environment

#### **Credit-5: Practicals**

- 1. Extraction of genomic DNA
- 2. Quantification of DNA byspectrophotometer
- 3. Agarose gel electrophoresis of DNA
- 4. Estimation of DNA by DPAmethod
- 5. Estimation of RNA by orcinolmethod
- 6. Effect of UV on bacterialgrowth
- 7. Preparation of competent cells of bacteria
- 8. Problems on restrictionmapping

#### **Recommended Books**

- 1 Principles of Genetics-Irwin Herscowitz
- 2. Molecular Biology of the gene- Watson, Hopkins, Roberts, Steitz and Weiner
- 3. Genes-Benjamin Levin
- 4. General virology-Luria, Darnell, Baltimore and Campbell
- 5. Molecular Biology-David Frefielder
- 6. Practical Microbiology- Aneja
- 7. Microbial Genetics ByMaloy, Freifelder
- 8. Molecular Genetics By Gunther and Stent
- 9. Genetic Analysis By Griffith, Suzuki and others
- 10. Gene cloning and DNA analysis: an introduction/TA Brow

# B.Sc. GENETICS II YEAR SEMESTER- IV BS BIOSTATISTICS, POPULATION GENETICS & BIOINFORMATICS

#### Credit 1 Basic concepts and applications of Biostatistics in Genetics

- 1.1. Population, Random sample, Methods of sampling
- 1.2. Variable-qualitative, quantitative, examples from genetics experiments
- 1.3 Probability, combining probabilities, sum rule, product rule, binomial theorem, Poisson distribution for rare events in Biology.

Introduction to normal distribution, Standard Normal Variate.

- 1.4. Goodness fit Chi-square for Mendelian segregation ratios. Level of significance, degrees of freedom, test of independence of attributes 2x2 contingency, rxc contingency
- 1.5. Estimation of mean, standard deviation, standard error for a quantitative variable, testing difference between means using Z, t test for large and small samples, Concept of ANOVA
- 1.6 Bivariate data- scatter diagram, correlation-Pearson correlation coefficient, regression equation and fitting a straight line for prediction of unknown values of a variable.

### Credit 2: Hardy-Weinberg equilibrium and forces affecting equilibrium.

- 2.1 Concept of population- deme, genetic and phenotypic variation, gene pool, allelic frequencies, genotypic frequencies. HW equilibrium genetic structure of populations and panmixis, HW equilibrium assumptions, implications and applications.
- 2.2 Establishment of HW equilibrium to single gene loci, multiple alleles of blood groups, sex linked loci
- 2.3 Factors affecting equilibrium: mutation, selection-patterns of selection, joint effects of mutation and selection, migration and gene flow
- 2.4 Small populations- genetic drift, Wahlund effect, inbreeding coefficient, effects of inbreeding on genotypic frequencies and consequences in terms of quantitative traits, components of variance heritability and inbreeding depression, genetic load- mutational and segregation
- 2.5 Effective population size
- 2.6 Pedigree construction -Raw pedigree, fork line pedigree, calculation of inbreeding coefficients from pedigrees

#### Credit 3: Introduction to bioinformatics and biological databases

3.1 Bioinformatics definition, history, scope and applications.

- 3.2 Bioinformatics tools and resources internet basics, role of internet, free online tools, downloading free softwares and installation.
- 3.3 Introduction to Artificial intelligence and bioinformatics web portals NCBI, EBL, ExPASy
- 3.4 Biological databases: Classification of databases primary (GenBank), secondary (PIR) and tertiary or composite (KEGG) databases.
- 3.5 DNA sequence databases (ENA & DDBJ)
- 3.6 Protein sequence databases (Swissport& PROSITE)

#### **Credit 4: Sequence Alignment**

- 4.1 Basics of sequence alignment match, mismatch, gaps, gap penalties, scoring alignment.
- 4.2 Types of sequence alignment pairwise and multiple alignment, local and global alignment.
- 4.3 Scoring matrices PAM and BLOSUM., Dot matrix comparison of sequences
- 4.4 Pairwise sequence similarity search by BLAST and FASTA, multiple sequence alignment (Clustal W).
- 4.5 Concepts of phylogenetic tree character based (maximum likelihood & maximum parsimony method)
- 4.6 AI& ML in Bioinformatics- Genome sequencing and variant detection, Protein structure prediction (AlphaFold and AI-based models), AI in drug-target interaction prediction

#### Credit 5: Practicals GEN 414

- Application of probability to Mendelian segregation-monohybrid, dihybrid- Goodness of fit Chi square.
- 2. Application of binomial theorem for sex, disease distribution and Poisson distribution for rare events in biology.
- 3. Problems Z and t-test for differences in mean values
- 4. Scatter diagram, calculation of correlation coefficient and fitting straight line for quantitative traits.
- 5. Calculation of gene and genotypic frequencies -gene counting, testing HW equilibrium diallelic locus with dominance, Frequency of recessive alleles by square rooting method and estimation of carriers under complete dominance for rare recessive disorders.
- 6. Testing equilibrium for multiple alleles of blood group locus, Testing HW equilibrium of sex linked genes for females and oscillating equilibrium
- 7. Exploring web portals NCBI, EBI &ExPASy,Literature search through PubMed and PubMed Central,Sequence retrieval from GenBank, ENA, Swissport.
- 8. Pairwise homology search by BLAST and FASTA

#### References

- 1. Principles of Genetics -Robert H.Tamarin
- 2. Genetics Monroe W. Strickberger
- 3. Biostatistics W. Daniel
- 4. Biosatatistical Analysis by Jerrold H Zar
- 5. Introduction to Quantitative Genetics-DS Falconer
- 6. Population Genetics -V. VenugopalRao and PratibhaNallari
- 7. Population genetics by C.C.Li
- 8. Introduction to Bioinformatics by Aurther M LeskDeveloping Bioinformatics computer Skills by: Cynthia Gibas, Per Jambeck
- 9. Bioinformatics second edition by David Mount
- 10. Essential Bioinformatics by Jin Xiong
- 11. Bioinformatics Computing by Bryan Bergeron
- 12. Bioinformatics: Concepts, Skills & Applications by R.S. Rastogi P

# B.Sc. GENETICS III YEAR SEMESTER V MDC BASIC & APPLIED GENETICS

#### **Unit 1: Introduction to Genetics**

- 1.1. Genotype & phenotype; homozygous & heterozygous, dominant & recessive, gene & allele
- 1.2. Mendelian geneties Principle of dominance, Principle of segregation, Principle of Independent Assortment
- 1.3. Trait Inheritance- ABO blood groups in human, eye color in Drosophila
- 1.4. Polygenic Inheritance-Kernel colour in Maize, skin colourim man
- 1.5. Sex-linked Inheritance-haemophilia and colour blindness in man
- 1.6. Non-Mendelian inheritance-Maternal inheritance-Variegation in leaves of higher plants-Mirabilis Jalapa

#### Unit 2: Cellular & Molecular basis of Inheritance

- 2.1. DNA structure and its alternative forms (A. B & Z)
- 2.2. RNA- Types of RNA (rRNA, mRNA & tRNA)
- 2.3. Ultra structure of prokaryotic cell (cell membrane and plasmids, Nucleoid)
- 2.4. Ultra structure of eukaryotic cell (nucleus, mitochondria, chloroplast, endoplasmic reticulum, Golgi apparatus)
- 2.5. Chromosomes: Packaging of DNA into Chromosomes, structure (centromere and telomere), karyotype
- 2.6. Cell division- stages of mitosis, meiosis I&II& fertilization

#### Unit 3: Genomes & Genetic Engineering

- 3.1. Prokaryotic genomes genome size & organization
- 3.2. Eukaryotic genomes-features of eukaryotic nuclear and organellar genomes
- 3.3. Human genome project-goals and achievements
- 3.4. Genetic Engineering- Transgenic plants-Bt cotton, Golden rice
- 3.5. Genetic Engineering Transgenic animals -Molecular pharming-Buffalo and Goat
- 3.6. Genetic Engineering: Environment- bioremediation

#### **Unit 4: Human Genetics**

- 4.1. Human nuclear genome -general features
- 4.2. Human chromosome anomalies: Down's syndrome and Klinefelter's syndrome
- 4.3. Single gene disorders-Hemoglobinopathies (Sickle cell disease, Thalassemias)
- 4.4. Complex genetie diseases-Hypertension, Diabetes mellitus
- 4.5. Genetic testing: Prenatal screening (Invasive methods and Non- invasive techniques, Neonatal screening (PKU), Preclinical screening (Alzheimer's)
- 4.6. Therapeutics: Conventional treatment modalities- PKU, Gene therapy types-somatic and germ

line gene therapy, Gene therapy trials: ADA deficiency

- 1. The Foundations of GenetiesBy F. A. E. Crew Elsevier, 2014
- 2. Concepts of Genetics, 7/E By Klug Pearson Education India, 2002
- 3. Genetics ByKarvita B. Ahluwalia New Age International, 2009
- 4. Genetics by M. Yadav Discovery Publishing House, 2003 By M. Yadav
- 5. Human Genetics: The Basics ByRicki Lewis Taylor & Francis. -2016
- 6. Essentials of Human Genetics (Rev) By Bhatnagar, S.M. Orient Blackswan, 1999
- 7. DNA Technology: The Awesome Skill By 1. Edward Alcamo Gulf Professional Publishing. 2001
- 8. Recombinant DNA Technology Keya ChaudhuriThe Energy and Resources Institute (TERI), 2013
- 9. Recombinant DNA Technology edited by Sardul Singh Sandhu 1. K. International Pvt Ltd. 2010

# B.SC. GENETICS III YEAR SEMESTER V BS PLANT GENETICS & BIOTECHNOLOGY

#### Unit 1: Basis of Plant Life Cycle and Genetics

- 1.1. Overview of plant development and life cycle-sporogenesis, gametogenesis. pollination, fertilization, embryogenesis (development of monocot & dicot embryos)
  - 1.2. Seed (monocot & dicot) development and seed germination
- 1.3. Meristems root apical meristems & root development, shoot apical meristems & leaf development; flower and fruit development
- 1.4. Plant hormones and their actions- auxins, cytokinins, gibberellins, abscisic acid, ethylene, brassinosteroids
- 1.5. Plant Nuclear Genome Organization- General features, Variation of Genome size among plants, fine structure of plant gene
- 1.6. Plant Organellar Genome Organization Mitochondria, Chloroplast

#### Unit 2: Plant Tissue culture

- 2.1. Media and culture conditions, sterile technique
- 2.2. Regeneration methods of plants in culture- organogenesis, somatic embryogenesis; Somaclonal variation
- 2.3. Induction of callus and cell suspension cultures
- 2.4. Protoplast culture techniques-production of somatic hybrids and cybrids
- 2.5. Anther/microspore culture- production of haploids and double haploids and their uses
- 2.6. Somatic embryo culture and production of synthetic seeds

#### Unit 3: Plant Breeding& Hybrid seed production

- 3.1. Mating systems Self fertilization, Cross fertilization and Apomixis
- 3.2. Methods of breeding in Self-pollinating species- pedigree breeding, single-seed descent, bulk breeding method
- 3.3. Methods of breeding in Cross-pollinating species- mass selection, recurrent selection
- 3.4. Hybrid seed production- genetic male sterility(procedure for hybrid seedproduction by using GMS)
- 3.5. Hybrid seed production based on cytoplasmic genetic male sterility (seed production of CMS lines (A), maintainer line (B), restorer line (R)
- 3.6. Hybrid seed production based on functional male sterility system-gametocides and their use in hybrid seed production

### Unit 4: Transgenic plants production and applications

4.1. Introduction to genome editing and its significance, Transformation based transgenic plants production-*Agrobacterium tumefaciens* and viral vectors



- 4.2. Direct gene transfer based transgenic plants production- particle bombardment, electroporation, silicon carbide whiskers, sonication, laser micro puncture, nanofiber arrays, chemical methods
- 4.3. Genetically modified crops for insect resistance-Bt crops, microbes & plant derived toxins
- 4.4. Genetically modified crops for Virus resistance- coat protein mediated cross protection, antisense and sense mediated resistance, satellite RNA prolection pathogen targeted protection
- 4.5. Genetically modified crops for Disease resistance- pathogenesis related proteins, anti microbial proteins, manipulation of disease resistance genes
- 4.6. Transgenic plants for product quality- improved storage, longer shelt life, nutritional quality (Golden Rice).

#### **PRACTICALS**

- 1. Histological studies of embryos at different stages
- 2 Seed testing for germination
- 3. Introduction to Plant tissue culture laboratory -equipment
- 4. Sterilization methods in plant tissue culture laboratory-aseptic technique
- 5. Preparation of stock solutions of MS basal medium and plant growthregulators
- 6. Isolation of explants, establishment and maintenance of callus
- 7. Culture of anthers and establishment of haploid plants
- 8. Preparation of synthetic seeds

- 1 Principles of Plant Geneties and Breeding (2012) by George Acquaah. SecondEdition Wiley-Blackwell Publishers
- 2 Plant Tissue Culture: Techniques and Experiments (2013) by Roberta H. Smith. Academic Press, U.K
- 3 Plant Tissue Culture and Biotechnology: Emerging trends (2003) by P.BKaviKishor. Universities Press
- 4 Plant Tissue Culture: Basic and Applied (2005) by TimirBaranJha. Universities Press
- 5. Plant Biotechnology: Practical Manual (2007) by C. C. Giri. ArchanaGiri.LKInternational Publishers
- 6. From Plant Genomics to Plant Biotechnology (2013) edited by PalmiroPoltronieri, NatalijaBurbulis. CorradoFogher, Woodhead Publishing Limited, New Delhi
- 8. Plant Genomics and Biotechnology (2016) Isabelle Nickel. SyrawoodPublishing House
- 9. Plant Biotechnology and Agriculture: Prospects for the 21st Century (2012)edited by Arie Altman, Paul M. Hasegawa, Elsevier
- 10. Plant Cell Biotechnology by Rudolf Endress, Springer-Verlag Berlin

### B.SC. GENETICS II YEAR SEMESTER VI BS SEC CYTOGENETIC ANALYSIS

### **Unit 1: Preparation of Chromosomes**

- 1.1. Cell culture sterilizing techniques, growth media, variables affecting cell growth. contamination in tissue culture, preservation of cells
- 1.2. Sample collection and handling peripheral blood, bone marrow, amniotic fluid, sold tissues
- 1.3. Culture mitiation, harvesting, hypotonic treatment, slide preparation
- 1.4. Chromosome staining and banding -G-banding, Q-banding. R-banding. C-banding
- 1.5. Karyotyping-metaphase spread, counting of chromosomes

#### Unit 2: Chromosome Analysis

- 2.1. Microscopy-Bright-field microscopy, inverted and fluorescence microscopy
- 2.2. Chromosomal analysis chromosome number, size & shape in humans, karyotyping chromosomes- ideogram
- 2.3. Chromosome abnormalities Structural (breaks, gaps. deletions, insertions. duplications. inversions, translocations), numerical: aneuploidy (monosomy. trisomy &tetrasomy); polyploidy (triploidy, tetraploidy)
- 2.4. FISH&SKY- principle, applications and limitations
- 2.5. Screening Analysis amniotic fluid sampling, chorionic villi sampling, bone marrow aspiration & biopsy analysis

- 1.AGT cytogenetics Laboratory Manual (2017) Arsham. Barch & Lawee. Wiley Blackwell publications
- 2. Human cytogenetics-A practical approach (2001) Rooney, Oxford University press
- 3. Manual of cytogenetics in Reproductive Biology (2014). Pankaj Talwar, Jaypee Brothers Medical Publishers (P) Ltd.
- 4. Chnical Biochemistry (2013) Gaw. Cowan, Murphy. Srivastava and O'Reilly. Elsevier

# (31

# B.SC. GENETICS II YEAR SEMESTER VI BS SEC BIOPHYSICAL AND MOLECULAR BIOLOGY TECHNIQUES

#### Unit 1: Biophysical techniques

- 1.1. Spectroscopy principle, instrumentation, ultraviolet and visible light spectroscopy, applications
- 1.2. Chromatography-types of chromatographie techniques (paper, ion exchangechromatography, size exclusion chromatography)- principle & applications
- 1.3. Centrifugation-principles of sedimentation, preparative centrifugation (differential centrifugation & density gradient centrifugation), applications
- 1.4. Electrophoretic techniques-types (Agarose gel electrophoresis, SDS PAGE), principle & applications
- 1.5. Mass spectrometry principle & applications
- 1.6. Microscopy-principle & applications of Phase contrast microscope and confocalmicroscopy

#### Unit 2: Molecular Biology techniques

- 2.1. PCR -Types (Allele-Specific PCR, ARMS PCR, Reverse Transcriptase PCR) principleand applications
- 2.2. Quantitative Real Time PCR principle and applications
- 2.3. DNA Sequencing principle and applications
- 2.4. Microarray- DNA and protein arrays principle and applications
- 2.5. Blotting techniques Southern blot, Northern blot and Western blot- principle and applications
- 2.6. Fluorescence & Chemiluminescence Imaging- principle and applications

- 1. Principles and Techniques of Biochemistry and Molecular Biology edited by Keith Wilson, John Walker Cambridge University Press, 2010
- 2. Basie Techniques in Biochemistry and Molecular Biology by R K Sharmal K International Pvt Ltd, 2008
- 3. Techniques in Molecular Biology Textbook Student Edition, Agrawal S International Book Distributing Company, 2008
- 4. Analytical Techniques in Biochemistry and Molecular Biology, By RajanKatoch Springer Science

# B.Sc. GENETICS III YEAR SEMESTER VI SEC

### DNA TECHNOLOGY IN HEALTH CARE AND TRANSGENICS

### Unit1:DNA TechnologyinHealth care

MethodsofDNAanalysis–DNAprobes,PCR,signalamplification,DNAchip, RFLP analysis, DNA fingerprinting.

Diagnosing infectious diseases – AIDS, tuberculosis.

Identifyinggeneticdisease-DMD, Huntingtonsdisease. Gene therapy-

ADA deficiency and Cystic fibrosis.

Pharmaceutical products of DNA technology—Recombinant insulin, recombinant growth hormone, recombinant vaccines-Hepatitis-B

# Unit2: Applications of Transgenic Technology

Custom Made Animals-Human mouse, Oncomouse, Alzheimer's mouse, Knock out mouse;

Diagnosing infectious disease – AIDS and tuberculosis.

Animalbioreactors-PharmAnimals.

Enhancing resistance in plants – ice-minus experiments, resistance to biological agents, and resistance to herbicides. Coat protein-mediated protection against virusinfections, geneticengineering of crops for insectres is tance using genes of plant origin. Bioengineered foods – Vegetablevaccines, GM foods.

Energyapplications -biohydrogen, bioethanol, biomethanol, biobutanol

- 1. DNATechnology:TheAwesomeSkillByI.EdwardAlcamoGulfProfessional Publishing, 2001.
- 2. RecombinantDNATechnologyKeyaChaudhuriTheEnergyandResourcesInstitute (TERI), 2013.
- 3. RecombinantDNATechnologyeditedbySardulSinghSandhuI.K.InternationalPvt Ltd, 2010.
- **4.** FromGenes toGenomes: ConceptsandApplications ofDNATechnologyByJeremy W.Dale,Malcolm vonSchantz,John Wiley&Sons, 2011

# B.Sc. GENETICS III YEAR SEMESTER VI BS HUMAN GENETICS & IMMUNOLOGY

#### **Unit 1: The Human Genome**

- 1.1. Human nuclear genome organisation -gene size and density, organisation of protein coding genes
- 1.2. Gene families: globin gene family, histone gene family
- 1.3. Non-coding RNA genes- organisation of rRNA, tRNA & microRNA genes
- 1.4. Repetetive elements -LINES, SINES, LTR elements, satellites, minisatellites. Microsatellites; Transposons
- 1.5. Human Mitochondrial genome organization
- 1.6. Human genome project Goals and achievements, Applications & Ethics

#### Unit 2: Gene transmission and molecular basis

- 2.1. Human Cytogenetics: Human Karyotype, Pathology of human chromosomes -Numerical and structural chromosomal abnormalities
- 2.2. Gene transmission in families and pedigree analysis, patterns of Inheritance- Autosomal inheritance-(dominant & recessive), Sex-linked inheritance, Sex-limited and sex-influenced traits, Mitochondrial inheritance;
- 2.3. Monogenic traits and single gene disorders (Huntington's Disease, PKU, Marfan's syndrome, DMD, Cystic Fibrosis, Haemophilia;
- 2.4. Complex traits (Polygenic inheritance, multifactorial disorders -alcoholism, diabetes mellitus, obesity; Cancer
- 2.5. Linkage-Physical and genetic mapping, genetic markers; gene polymorphisms
- 2.6. Clinical genetics: Genetic Testing and Screening- Prenatal Diagnosis, New born Screening (PKU), carrier testing (Sickle cell anemia); Gene Therapy- somatic and germ line gene therapy, Gene therapy trials (ADA deficiency)

#### Unit 3: Principals of Immunnology & Humoral Immune Responses

- 1.1. Introduction to Immune System, types of immunity-innate and adaptive
- 1.2. Innate immunity- anatomical barriers & physiological barriers, phagocytic barrier
- 1.3. Cells& Lymphoid organs system Lymphoid cells (B cells, T cells and NK cells). Myeliod cells (Neutrophils, Eosinophils, basophils, mast cells, macrophages and dendritic cells): Primary lymphoid organs (Bonemarrow&thymus); secondary lymphoid organs (lymph node andspleen)
- 1.4. Antigens- Immunogens, epitopes; Haptens and types of adjuvants

- 1.5. Basic structure of Immunoglobulin; classes and its functions IgG, IgM, IgA, IgD, IgE & antigenic determinants
- 1.6. Polyclonal antibodies, Monoclonal antibodies- its production and applications

# Unit 4: Cell-mediated Immune responses and Immunotechniques

- 4.1. Hypersensitivity- Types (I, II, III &IV)
- 4.2. Autoimmunity and autoimmune diseases (thyroid and Rheumatoid arthritis)
- 4.3. Immunodeficiency disorders primary immunodeficiency disorders (SCID). secondary immunodeficiency disorders (AIDS)
- 4.4. Vaccines- passive & active immunization and Types of vaccines- live attenuated and inactivated killed vaccines, sub-unit vaccines, DNA vaccines, edible vaccines
- 4.5. Ag-Ab reactions- Agglutination, neutralization. complement fixation, opsonisation; Immunoprecipitation, immunoelectrophoresis, immunodiffusion tests:.
- 4.6. ELISA (Sandwich, Indirect, Dot ELISA)- Principle and applications & Immuno fluorescence assays (direct & indirect)- Principle and applications

#### **PRACTICALS**

- 1. Karyotyping (normal male/normal female)
  - 2. Identification of chromosome anomalies using Idiograms- Autosomal disorders (Down Syndrome/Edward's syndrome): X-linked disorders -(Klienefelter's syndrome / Turner's syndrome)
  - 3. Construction of pedigrees and identification of mode of inheritance of a trait.
  - 4. ABO blood typing
  - 5. Differential count of lymphocytes
  - 6. Single Radial Immunodiffusion
  - 7. Enzyme Linked Immunnoabsorent Assay (ELISA)

- 1. A.G. Motulsky and F. Vogel (1986) Human Genetics
- 2. R. F. Mueller and I.D Yound (2001) Emery's Elements of Medical Geneties
- 3. Gardner. A. and Davies. T. (2009) Human Genetics-Scion Publishing. 2nd edition
- 4. Lewis, R. (2008) Human Genetics: Concepts and Applications, MeGraw Hill Publishing. New York.8<sup>th</sup>ed.
- 5. Tom Strachan and Andrew Read (1996) Human Molecular Genetics
- 6. Essential Immunology by 1. Roitt.Publ:Blackwell
- 7. Immunology by G. Reever& 1. Todd, Publ:Blackwell
- 8. Immuno diagnostics by S.C.Rastogi, Publ:NewAge
- 9. Immunology by Richard A.Golds by. Thomas J Kindt, Barbaraa. Osborne. Janiskuby



- 10. Fundamental immunology by WilliamE.Paul
- 11. Basic Immunology by Bhoosreddy G.L. and WadherB.J.
- 12. Text book of immunology by Baruj Benacerraf
- 13. Immunology by Kuby:Publ: Freeman

# QUESTION PAPER PATTERN FACULTY OF SCIENCE

Title of the Paper: B.SC. GENETICS

[Duration: 3 Hours]

[Max Marks-80M]

#### **SECTION-A**

**Short Answer type questions** 

Answer any EIGHT questions (TWO FROM EACH PART)

[8x4=32M]

#### PART A:

- 1. Unit-1
- 2. Unit-1
- 3. Unit-1

#### PART B:

- 4. Unit-11
- 5. Unit-11
- 6. Unit-II

#### PART C:

- 7. Unit -III
- 8. Unit-111
- 9. Unit-III

#### PART D:

- 10. Unit -IN
- 11. Unit-IV
- 12. Unit-IV

#### **SECTION-B**

### **Essay Answer type question**

**Answer all questions** 

[4x12=48M]

13.(a) Unit-1

OR

(b)Unit-1

14.(a) Unit-11

OR

(b)Unit-II

15.(a) Unit-III

OR

(b)Unit-III

16.(a) Unit-IV

OR

(b)Unit-IV

